277 research outputs found

    Soil organic carbon and root distribution in a temperate arable agroforestry system

    Get PDF
    Aim To determine, for arable land in a temperate area, the effect of tree establishment and intercropping treatments, on the distribution of roots and soil organic carbon to a depth of 1.5 m. Methods A poplar (Populus sp.) silvoarable agroforestry experiment including arable controls was established on arable land in lowland England in 1992. The trees were intercropped with an arable rotation or bare fallow for the first 11 years, thereafter grass was allowed to establish. Coarse and fine root distributions (to depths of up to 1.5 m and up to 5 m from the trees) were measured in 1996, 2003, and 2011. The amount and type of soil carbon to 1.5 m depth was also measured in 2011. Results The trees, initially surrounded by arable crops rather than fallow, had a deeper coarse root distribution with less lateral expansion. In 2011, the combined length of tree and understorey vegetation roots was greater in the agroforestry treatments than the control, at depths below 0.9 m. Between 0 and 1.5 m depth, the fine root carbon in the agroforestry treatment (2.56 t ha-1) was 79% greater than that in the control (1.43 t ha-1). Although the soil organic carbon in the top 0.6 m under the trees (161 t C ha-1) was greater than in the control (142 t C ha-1), a tendency for smaller soil carbon levels beneath the trees at lower depths, meant that there was no overall tree effect when a 1.5 m soil depth was considered. From a limited sample, there was no tree effect on the proportion of recalcitrant soil organic carbon. Conclusions The observed decline in soil carbon beneath the trees at soil depths greater than 60 cm, if observed elsewhere, has important implication for assessments of the role of afforestation and agroforestry in sequestering carbon

    Application of practical hydrodynamics to airship design

    Get PDF
    The purpose of the first two parts of this report is to present in concise format all the formulas required for computation of the hydrodynamic forces, so that they can be easily computed for either straight or curvilinear flight. Improved approximations are also introduced having a high degree of accuracy throughout the entire range of practical proportions. The remaining two parts of the report are devoted respectively to stability and skin friction, as functions of the same hydrodynamic forces

    Soil carbon changes after establishing woodland and agroforestry trees in a grazed pasture

    Get PDF
    This study determined the effect of two tree planting methods (woodland and a silvopastoral agroforestry system) on the soil bulk density and organic carbon content of a grassland site in lowland England. Soil organic carbon was measured in pasture, silvopastoral tree, and woodland treatments at six depths representative of 0–150 cm. Fourteen years after tree planting, the organic carbon content in the surface soil layer (0–10 cm) was greatest in the pasture (6.0 g 100 g− 1) and least in the woodland (4.6 g 100 g− 1); the value (5.3 g 100 g− 1) below the silvopastoral trees was intermediate. In the 10–20 cm layer, the organic carbon content in the woodland was 13% lower than the pasture. No treatment effects on soil carbon were detected below 20 cm. Possible reasons for the decline in surface soil carbon include a decline in grass cover and reduced soil water content. Measurements of above ground carbon storage by the trees indicated that tree planting increased overall carbon storage, with the silvopastoral system predicted to achieve a higher level of carbon storage than equivalent areas of separate woodland and pasture. A power analysis indicates that a prohibitively large number of replicates is needed to ensure a lower than 20% risk of falsely concluding no treatment differences at individual depth increments below 10 cm and cumulative depths extending below 40 cm

    The impacts of feral boar on woodland flora and fauna in Great Britain

    Get PDF
    Mayle, B., Harmer, R., Kewitt, A., Peace, A., Straw, N., Williams, D., Upson, M

    Land use change and soil carbon pools: Evidence from a long-term silvopastoral

    Get PDF
    Multi-functional silvopastoral systems provide a wide range of services to human society including the regulation of nutrients and water in soils and the sequestration of atmospheric carbon dioxide (CO2). Although silvopastoral systems significantly contribute to enhance aboveground carbon (C) sequestration (e.g. C accumulation in woody plant biomass), their long-term effects on soil C pools are less clear. In this study we performed soil physical fractionation analyses to quantify the C pool of different aggregate fractions across three land use types including (1) silvopastoral system with ash trees (Fraxinus excelsior L.), (2) planted woodland with ash trees, and (3) permanent grassland, which were established in 1989 at Loughgall, Northern Ireland, UK. Our results show that 26 years after the conversion of permanent grassland to either silvopastoral or woodland systems, soil C (and N) stocks (0–20 cm depth) did not significantly change between the three land use types. We found, however, that permanent grassland soils were associated with significantly higher C pools (g C kg−1 soil; P 2 mm) whereas soil C pools of the micro-aggregate (53–250 μm) and silt and clay (< 53 μm) fractions were significantly higher in the silvopastoral and woodland systems (P < 0.05). A key finding of this study is that while tree planting on permanent grassland may not contribute to greater soil C stocks it may, in the long-term, increase the C pool of more stable (recalcitrant) soil micro-aggregate and silt and clay fractions, which could be more resilient to environmental change

    Where does prepotency come from on developmental tests of inhibitory control?

    Get PDF
    Understanding the processes that make responses prepotent is central to understanding the role of inhibitory control in cognitive development. The question of what makes responses prepotent was investigated using the two most widely studied measures of preschoolers' inhibitory control. Across two experiments, 80 children were tested either on a series of stimulus-response compatibility (SRC) tasks or on a series of Go/No-go tasks. Results indicated that high levels of prepotency on SRC tasks (such as the Day/Night task) occur only under specific conditions; making a verbal response can be highly prepotent if the stimulus and response are associated with each other (e.g., saying "cup" to a cup) but is less prepotent when they are unassociated (e.g., saying "cup" to a doorstop). Action responses (e.g., lifting a cup to your mouth) show little prepotency irrespective of whether the stimulus and response are associated. In contrast, with Go/No-go tasks, a much wider variety of behaviors are highly prepotent regardless of whether the stimulus and response are associated. These data suggest that prepotency arises in very different ways, depending on the type of task used. Although both Go/No-go tasks and SRC tasks can make inhibitory demands, they do so for fundamentally different reasons

    Depot Medroxyprogesterone Acetate Use and Blood Lead Levels in a Cohort of Young Women

    Get PDF
    BACKGROUND: Injectable contraceptive use is common, with 74 million users worldwide. Use of the injectable contraceptive depot medroxyprogesterone acetate (DMPA) is associated with bone mineral density loss. We hypothesize that increased bone resorption with DMPA use allows for mobilization of the toxic metal lead stored in bone to blood, presenting users with increased systemic exposure to lead. OBJECTIVE: The objective of our study was to investigate the association between current DMPA use and blood lead concentrations. METHODS: We conducted a cross-sectional analysis using enrollment data from the Study of Environment, Lifestyle & Fibroids (SELF), a cohort of 1,693 African-American women who were 23-35 years of age. Data on DMPA use were collected by computer-assisted telephone interview. Blood lead concentrations were measured in whole blood samples among 1,548 participants (91% of cohort). We estimated the adjusted percent difference in blood lead concentrations and 95% confidence intervals (CI) between current DMPA users and nonusers using multivariable linear regression. RESULTS: Geometric mean blood lead concentration was 0.69 μg/dL (95% CI: 0.67, 0.71). After adjustment, current DMPA users (7% of cohort) had blood lead concentrations that were 18% higher than those of nonusers (95% CI: 8%, 29%). Similar associations were observed with additional analyses to assess for potential bias from smoking, DMPA-induced amenorrhea, use of estrogen-containing contraceptives, having given birth in the prior year, and history of medical conditions or current medication use associated with bone loss./ DISCUSSION: Our results indicate that current DMPA use is associated with increased blood lead concentrations. Further research, particularly in populations highly exposed to lead, is warranted to consider tradeoffs between the adverse effects of lead on human health and the importance of DMPA as a contraceptive option to prevent unintended pregnancy. https://doi.org/10.1289/EHP7017

    Integrating belowground carbon dynamics into Yield-SAFE, a parameter sparse agroforestry model

    Get PDF
    Agroforestry combines perennial woody elements (e.g. trees) with an agricultural understory (e.g. wheat, pasture) which can also potentially be used by a livestock component. In recent decades, modern agroforestry systems have been proposed at European level as land use alternatives for conventional agricultural systems. The potential range of benefits that modern agroforestry systems can provide includes farm product diversification (food and timber), soil and biodiversity conservation and carbon sequestration, both in woody biomass and the soil. Whilst typically these include benefits such as food and timber provision, potentially, there are benefits in the form of carbon sequestration, both in woody biomass and in the soil. Quantifying the effect of agroforestry systems on soil carbon is important because it is one means by which atmospheric carbon can be sequestered in order to reduce global warming. However, experimental systems that can combine the different alternative features of agroforestry systems are difficult to implement and long-term. For this reason, models are needed to explore these alternatives, in order to determine what benefits different combinations of trees and understory might provide in agroforestry systems. This paper describes the integration of the widely used soil carbon model RothC, a model simulating soil organic carbon turnover, into Yield-SAFE, a parameter sparse model to estimate aboveground biomass in agroforestry systems. The improvement of the Yield-SAFE model focused on the estimation of input plant material into soil (i.e. leaf fall and root mortality) while maintaining the original aspiration for a simple conceptualization of agroforestry modeling, but allowing to feed inputs to a soil carbon module based on RothC. Validation simulations show that the combined model gives predictions consistent with observed data for both SOC dynamics and tree leaf fall. Two case study systems are examined: a cork oak system in South Portugal and a poplar system in the UK, in current and future climate

    Test Data Sets for Evaluating Data Visualization Techniques

    Full text link
    In this paper we take a step toward addressing a pressing general problem in the development of data visualization systems — how to measure their effectiveness. The step we take is to define a model for specifying the generation of test data that can be em-ployed for standardized and quantitative testing of a system’s per-formance. These test data sets, in conjunction with appropriate testing procedures, can provide a basis for certifying the effective-ness of a visualization system and for conducting comparative studies to steer system development

    Routine activities and proactive police activity: a macro-scale analysis of police searches in London and New York City

    Get PDF
    This paper explored how city-level changes in routine activities were associated with changes in frequencies of police searches using six years of police records from the London Metropolitan Police Service and the New York City Police Department. Routine activities were operationalised through selecting events that potentially impacted on (a) the street population, (b) the frequency of crime or (c) the level of police activity. OLS regression results indicated that routine activity variables (e.g. day of the week, periods of high demand for police service) can explain a large proportion of the variance in search frequency throughout the year. A complex set of results emerged, revealing cross-national dissimilarities and the differential impact of certain activities (e.g. public holidays). Importantly, temporal frequencies in searches are not reducible to associations between searches and recorded street crime, nor changes in on-street population. Based on the routine activity approach, a theoretical police-action model is proposed
    • …
    corecore